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A balancing domain decomposition (BDD) method is considered as a preconditioner of the iterative domain decomposition method
(DDM) for magnetostatic problems. The BDD method enables us to keep convergence properties of the iterative DDM even if the
number of subdomains increases. However, in case of magnetostatic problems, the dimension of the coarse problem required in the
BDD procedure depends on the number of nodal points of the discretization based on the finite element method. This fact causes
that computational costs increase as computational models become larger. Therefore, to reduce the computational costs, a kind of
multigrid strategy is introduced into the BDD procedure.
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I. INTRODUCTION

WE HAVE introduced an iterative domain decomposition
method (DDM) to solve large scale computational

models derived from electromagnetic field problems; see, for
example, Kanayama, et al. [3] and Tagami [5]. In Tagami [5],
we formulate the iterative DDM based on a mixed formulation
of magnetostatic problems introduced in Kikuchi [1] and [2],
which enables us to prove unique solvability of the problems
and convergency of the approximate solution.

In this paper, we introduce a balancing domain decom-
position (BDD) method with a kind of multigrid strategy,
which is regarded as a preconditioner of the reduced iterative
DDM proposed in Tagami [5]. The BDD method is originally
proposed in Mandel [4], where the linear system is positive
symmetric. Although the linear system in our case is indefinite,
the BDD method enables us to keep the number of iterations of
the iterative DDM even if the number of subdomains increases.

However, in case of magnetostatic problems, the dimension
of the coarse problem required in the BDD procedure depends
on the number of nodal points of the discretization based on the
finite element method. This fact causes that computational costs
increase as computational models become larger. Therefore, to
reduce the computational costs, a kind of multigrid strategy is
introduced into the BDD procedure.

II. ITERATIVE DDM OF MAGNETOSTATIC PROBLEMS

Let Ω be a polyhedoral domain with its boundary Γ and
the outward unit normal n. Let u denote the magnetic vector
potential, f an excitation current density, and ν the magnetic
reluctivity. Then, the magnetostatic equation with the magnetic
vector potential and the Coulomb gauge condition is formu-
lated as follows: rot(ν rotu) = f in Ω,

divu = 0 in Ω,
u× n = 0 on Γ;

(1)

for example, see Kikuchi [1].

As usual, let L2(Ω) be the space of real functions defined in
Ω and 2nd power integlable in Ω; let H1(Ω) be the space of
functions in L2(Ω) with derivatives up to the 1st order. Then,
set functional spaces V and Q by

V :=
{
v ∈

(
L2(Ω)

)3
;

rotv ∈
(
L2(Ω)

)3
, v × n = 0 on Γ

}
,

Q :=
{
q ∈ H1(Ω); q = 0 on Γ

}
,

(2)

respectively.
Now, following Kikuchi [1], a mixed weak formulation of

magnetostatic problems with the Lagrange multiplier p is for-
mulated as follows: given f ∈

(
L2(Ω)

)3
, find (u, p) ∈ V ×Q

such that{
(ν rotu, rotv) + (v, grad p) = (f , v),

(u, grad q) = 0, ∀(v, q) ∈ V ×Q,
(3)

where ( . , . ) denotes the inner product of
(
L2(Ω)

)3.
As in Kikuchi [2], magnetic vector potential u is approx-

imated by the Nedelec element of the first order and the
Lagrange multiplier p is approximated by the conventional
P1-element. Then, the resultant linear system is obtained as
the finite element equation of magnetostatic problems with the
mixed formulation:(

A B
BT 0

)(
u
p

)
=

(
f
0

)
, (4)

where u, p, f correspond to the degrees of freedom (DOF) of
the magnetic vector potential, the Lagrange multiplier, and the
excitation current density, respectively.

Now, let us introduce the iterative DDM. The domain Ω is
assumed to be decomposed into non-overlapping subdomains
Ω(i) satisfying Ω(i) ̸= ∅, Ω =

∪
i Ω

(i), Ω(i)∩Ω(j) = ∅ (i ̸= j);
and let γB be the interface defined by γB :=

∪
i ̸=j

(
Ω(i)∩Ω(j)

)
.

Then, following Tagami [5], the main part of a reduced iterative
DDM for magnetostatic problems is solving the following
interface problem;

SuB = r, (5)



where S denotes the Schur complement matrix defined by

S :=
∑
i

E(i)S(i)E(i)T, (6)

S(i) := A
(i)
II −A

(i)
IBA

†
BBAIB

T, (7)

A(i) :=

(
A

(i)
II A

(i)
IB

A
(i)
IB

T
A

(i)
BB

)
, (8)

E(i) denotes the prolongation from DOF on γB to DOF in
Ω, the superscripts (i) denote the matrices corresponding to
Ω(i), the subscripts I and B denote DOF corresponding to
Ω(i) and γB , and † denotes the Moore–Penrose generalized
inverse, respectively; for detail, see [4].

In practical implementation, we apply the Conjugate Gra-
dient (CG) method into (5). Once uB can be obtained, we
can solve each subdomain problem, where imposed uB as the
boundary condition on γB . Therefore, we can reconstruct the
solution in the whole domain Ω.

III. A BALANCING DOMAIN DECOMPOSITION METHOD

As in Mandel [4], a BDD method is formally applied into
the interface problem (5) derived from the iterative DDM for
magnetostatic problems with the mixed formulation, which is
also regarded as a preconditioner of the iterative DDM in
Tagami [5]. That is, the preconditioning matirx M can be
written as follows:

M† :=
(
(I−P)TS(I−P) +P

)
S†, (9)

where
T :=

∑
i

E(i)DiS
(i)†D(i)TE(i)T, (10)

P := a projection matrix on W, (11)

W :=
{
v =

∑
i

E(i)D(i)u(i), u(i) ∈ Range
(
Z(i)

)}
, (12)

and Z(i) denotes an appropriate matrix satisfying

Ker
(
S(i)

)
⊂ Range

(
Z(i)

)
. (13)

As in (13), in the BDD methods, the kernel of a coefficient
matrix plays an important role. In case of (5), the kernel con-
sists of gradients of the P1-approximate Lagrange multipliers.
Therefore, the dimension of the kernel is equal to the number
of the nodal points of finite element mesh. This is why the
computational cost increases as the scale of computational
models becomes lager. In order to settle this difficulty, a kind
of multigrid strategy is introduced into the BDD method: set
a coarse grid in each subdomain, and “1st order polynomials
on the coarse grid” are adopted into solving the coarse grid
problems in the BDD procedure. That is, the matrix Z(i) is
replaced into Z̃(i), whose range consists of the gradient of the
“P1-element” with respect to each subdomain Ω(i), although
the condition (13) does not satisfy precisely. At that time, W
and P are replaced into

W̃ :=
{
ṽ =

∑
i

E(i)D(i)ũ(i), ũ(i) ∈ Range
(
Z̃(i)

)}
, (14)
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Fig. 1. Convergence history of the CG method for (5).

P̃ := a projection matrix on W̃, (15)

respectively. Then, the preconditioner M is also replaced into
M̃ defined by

M̃† :=
(
(I− P̃)TS(I− P̃) + P̃

)
S†, (16)

This strategy enable us to reduce computational costs when
solving the coarse grid problems, and to keep the efficiency of
the BDD method.

IV. NUMERICAL RESULTS

We consider a simple case as numerical examples, where
we obtain the exact solution in the circle domain. We use a
small scale computational model as the test case: its numbers
of DOF is about 104. The CG method is stopped when the
residual norm becomes less than 10−3.

Fig. 1 shows the convergence history of the CG method
for (5). We can confirm to obtain a convergence result by using
the proposed BDD method. As far as we know, there are a few
results on convergences of BDD methods for magnetostatic or
eddy current problems. Therefore, Fig. 1 is considered as the
first step of BDD methods for magnetic field problems. We
have no space enough to compare with other DDM in case of
more larger scale computational models. We show these results
at the poster.

V. CONCLUSIONS

The Balancing Domain Decomposition (BDD) method with
a kind of multigrid methods has been applied to magnetostatic
problems. We continue to confirm efficiency of the BDD
method, and apply the BDD method into more practical
computational models.
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